Impairment of the DNA repair and growth arrest pathways by p53R2 silencing enhances DNA damage-induced apoptosis in a p53-dependent manner in prostate cancer cells.

نویسندگان

  • Hong-Lin Devlin
  • Phillip C Mack
  • Rebekah A Burich
  • Paul H Gumerlock
  • Hsing-Jien Kung
  • Maria Mudryj
  • Ralph W deVere White
چکیده

p53R2 is a p53-inducible ribonucleotide reductase that contributes to DNA repair by supplying deoxynucleotide triphosphate pools in response to DNA damage. In this study, we found that p53R2 was overexpressed in prostate tumor cell lines compared with immortalized prostatic epithelial cells and that the protein was induced upon DNA damage. We investigated the effects of p53R2 silencing on DNA damage in LNCaP cells (wild-type p53). Silencing p53R2 potentiated the apoptotic effects of ionizing radiation and doxorubicin treatment as shown by increased sub-G(1) content and decreased colony formation. This sensitizing effect was specific to DNA-damaging agents. Comet assay and gamma-H2AX phosphorylation status showed that the decreased p53R2 levels inhibited DNA repair. Silencing p53R2 also reduced the levels of p21(WAF1/CIP1) at the posttranscriptional level, suggesting links between the p53-dependent DNA repair and cell cycle arrest pathways. Using LNCaP sublines stably expressing dominant-negative mutant p53, we found that the sensitizing effect of p53R2 silencing is mediated by p53-dependent apoptosis pathways. In the LNCaP sublines (R273H, R248W, and G245S) that have defects in inducing p53-dependent apoptosis, p53R2 silencing did not potentiate DNA damage-induced apoptosis, whereas p53R2 silencing was effective in a LNCaP subline (P151S) which retains the ability to induce p53-dependent apoptosis. This study shows that p53R2 is a potential therapeutic target that could be used to enhance the effectiveness of ionizing radiation or DNA-damaging chemotherapy in a subset of patients with prostate cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

Effects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells

Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...

متن کامل

Radiosensitivity and Repair Kinetics of Gamma-Irradiated Leukocytes from Sporadic Prostate Cancer Patients and Healthy Individuals Assessed by Alkaline Comet Assay

Background: Impaired DNA repair mechanism is one of the main causes of tumor genesis. Study of intrinsic radiosensitivity of cancer patients in a non-target tissue (e.g. peripheral blood) might show the extent of DNA repair deficiency of cells in affected individuals and might be used a predictor of cancer predisposition. Methods: Initial radiation-induced DNA damage (ratio of Tail DNA/Head DN...

متن کامل

P-60: Nano-Particle TiO2 Enhances Apoptosis in Testicular Tissue; Evidence for p53, bcl2, cyp19 Genes Expression

Background: Nano-particle Titanium Dioxide (TiO2) is a noncombustible, odorless powder that is widely used in different fields of industries. Previous reports showed that chronic exposure to TiO2 adversely impacts the testicular tissue and down-regulates the antioxidant capacity and down-regulates the endocrine status of the testicles. Present study was designed in order to identify the role of...

متن کامل

Chenopodium Botrys as a Source of Sesquiterpenes to Induce Apoptosis and G1 Cell Cycle Arrest in Cervical Cancer Cells

Conducting cell apoptosis pathways is a novel strategy in cancer treatment. This study aimed to explain that C. botrys essential oil could induce apoptosis and arrest the cell cycle in HeLa cells. Cytotoxic and apoptogenic effects of the essential oil of Jerusalem-oak (Chenopodium botrys L.), which was obtained from the aerial parts of the plant, were evaluated in HeLa cells. Cell viability was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 2008